Jupyter Notebook Binder

Project flow#

LaminDB allows tracking data flow on the entire project level.

Here, we walk through exemplified app uploads, pipelines & notebooks following Schmidt et al., 2022.

A CRISPR screen reading out a phenotypic endpoint on T cells is paired with scRNA-seq to generate insights into IFN-Ξ³ production.

These insights get linked back to the original data through the steps taken in the project to provide context for interpretation & future decision making.

More specifically: Why should I care about data flow?

Data flow tracks data sources & transformations to trace biological insights, verify experimental outcomes, meet regulatory standards, increase the robustness of research and optimize the feedback loop of team-wide learning iterations.

While tracking data flow is easier when it’s governed by deterministic pipelines, it becomes hard when it’s governed by interactive human-driven analyses.

LaminDB interfaces workflow mangers for the former and embraces the latter.

Setup#

Init a test instance:

!lamin init --storage ./mydata
Hide code cell output
πŸ’‘ creating schemas: core==0.47.5 
βœ… saved: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-06 17:23:47)
βœ… saved: Storage(id='oJ5MWMxM', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata', type='local', updated_at=2023-09-06 17:23:47, created_by_id='DzTjkKse')
βœ… loaded instance: testuser1/mydata
πŸ’‘ did not register local instance on hub (if you want, call `lamin register`)

Import lamindb:

import lamindb as ln
from IPython.display import Image, display
βœ… loaded instance: testuser1/mydata (lamindb 0.52.2)

Steps#

In the following, we walk through exemplified steps covering different types of transforms (Transform).

Note

The full notebooks are in this repository.

App upload of phenotypic data #

Register data through app upload from wetlab by testuser1:

ln.setup.login("testuser1")
transform = ln.Transform(name="Upload GWS CRISPRa result", type="app")
ln.track(transform)
output_path = ln.dev.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage)
output_file = ln.File(output_path, description="Raw data of schmidt22 crispra GWS")
output_file.save()
Hide code cell output
βœ… logged in with email testuser1@lamin.ai and id DzTjkKse
βœ… saved: Transform(id='s4LPhVnykuaLx9', name='Upload GWS CRISPRa result', type='app', updated_at=2023-09-06 17:23:49, created_by_id='DzTjkKse')
βœ… saved: Run(id='6LXMF159xiEAS1QYPPOa', run_at=2023-09-06 17:23:49, transform_id='s4LPhVnykuaLx9', created_by_id='DzTjkKse')
πŸ’‘ file in storage 'mydata' with key 'schmidt22-crispra-gws-IFNG.csv'

Hit identification in notebook #

Access, transform & register data in drylab by testuser2:

ln.setup.login("testuser2")
transform = ln.Transform(name="GWS CRIPSRa analysis", type="notebook")
ln.track(transform)
# access
input_file = ln.File.filter(key="schmidt22-crispra-gws-IFNG.csv").one()
# identify hits
input_df = input_file.load().set_index("id")
output_df = input_df[input_df["pos|fdr"] < 0.01].copy()
# register hits in output file
ln.File(output_df, description="hits from schmidt22 crispra GWS").save()
Hide code cell output
βœ… logged in with email testuser2@lamin.ai and id bKeW4T6E
βœ… saved: User(id='bKeW4T6E', handle='testuser2', email='testuser2@lamin.ai', name='Test User2', updated_at=2023-09-06 17:23:50)
βœ… saved: Transform(id='qBCjaQHpKfIsZm', name='GWS CRIPSRa analysis', type='notebook', updated_at=2023-09-06 17:23:50, created_by_id='bKeW4T6E')
βœ… saved: Run(id='9M7Rfmgc4qIdKRV05ZgP', run_at=2023-09-06 17:23:50, transform_id='qBCjaQHpKfIsZm', created_by_id='bKeW4T6E')
πŸ’‘ adding file bKqc6tmJiDpzOXfR6YRN as input for run 9M7Rfmgc4qIdKRV05ZgP, adding parent transform s4LPhVnykuaLx9
πŸ’‘ file will be copied to default storage upon `save()` with key `None` ('.lamindb/MxMRMbv8t97Khanw8PKR.parquet')
πŸ’‘ data is a dataframe, consider using .from_df() to link column names as features
βœ… storing file 'MxMRMbv8t97Khanw8PKR' at '.lamindb/MxMRMbv8t97Khanw8PKR.parquet'

Inspect data flow:

file = ln.File.filter(description="hits from schmidt22 crispra GWS").one()
file.view_flow()
https://d33wubrfki0l68.cloudfront.net/6dd8a9609a355864ab4fbaf61ebe45a4a43b8393/51dbf/_images/e4bc8335707ac06d4a099be3c1accf74a3723f2eec32fb30af89ad59070ef3e8.svg

Sequencer upload #

Upload files from sequencer:

ln.setup.login("testuser1")
ln.track(ln.Transform(name="Chromium 10x upload", type="pipeline"))
# register output files of upload
upload_dir = ln.dev.datasets.dir_scrnaseq_cellranger(
    "perturbseq", basedir=ln.settings.storage, output_only=False
)
ln.File(upload_dir.parent / "fastq/perturbseq_R1_001.fastq.gz").save()
ln.File(upload_dir.parent / "fastq/perturbseq_R2_001.fastq.gz").save()
ln.setup.login("testuser2")
Hide code cell output
βœ… logged in with email testuser1@lamin.ai and id DzTjkKse
βœ… saved: Transform(id='lub9rJoMCxWO48', name='Chromium 10x upload', type='pipeline', updated_at=2023-09-06 17:23:51, created_by_id='DzTjkKse')
βœ… saved: Run(id='OnitYPqw53030yZqlpzU', run_at=2023-09-06 17:23:51, transform_id='lub9rJoMCxWO48', created_by_id='DzTjkKse')
❗ file has more than one suffix (path.suffixes), inferring:'.fastq.gz'
πŸ’‘ file in storage 'mydata' with key 'fastq/perturbseq_R1_001.fastq.gz'
❗ file has more than one suffix (path.suffixes), inferring:'.fastq.gz'
πŸ’‘ file in storage 'mydata' with key 'fastq/perturbseq_R2_001.fastq.gz'
βœ… logged in with email testuser2@lamin.ai and id bKeW4T6E

scRNA-seq bioinformatics pipeline #

Process uploaded files using a script or workflow manager: Pipelines and obtain 3 output files in a directory filtered_feature_bc_matrix/:

transform = ln.Transform(name="Cell Ranger", version="7.2.0", type="pipeline")
ln.track(transform)
# access uploaded files as inputs for the pipeline
input_files = ln.File.filter(key__startswith="fastq/perturbseq").all()
input_paths = [file.stage() for file in input_files]
# register output files
output_files = ln.File.from_dir("./mydata/perturbseq/filtered_feature_bc_matrix/")
ln.save(output_files)
Hide code cell output
βœ… saved: Transform(id='1lyCPM7UktPARA', name='Cell Ranger', version='7.2.0', type='pipeline', updated_at=2023-09-06 17:23:52, created_by_id='bKeW4T6E')
βœ… saved: Run(id='uKwtoPBWgIhKRvfAmDij', run_at=2023-09-06 17:23:52, transform_id='1lyCPM7UktPARA', created_by_id='bKeW4T6E')
πŸ’‘ adding file Chr1ygMwadeQ4cSHA0z9 as input for run uKwtoPBWgIhKRvfAmDij, adding parent transform lub9rJoMCxWO48
πŸ’‘ adding file pRPxgofrlsa3MD1qjlMe as input for run uKwtoPBWgIhKRvfAmDij, adding parent transform lub9rJoMCxWO48
❗ file has more than one suffix (path.suffixes), inferring:'.tsv.gz'
❗ file has more than one suffix (path.suffixes), inferring:'.tsv.gz'
❗ file has more than one suffix (path.suffixes), using only last suffix: '.gz'
βœ… created 3 files from directory using storage /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata and key = perturbseq/filtered_feature_bc_matrix/

Post-process these 3 files:

transform = ln.Transform(name="Postprocess Cell Ranger", version="2.0", type="pipeline")
ln.track(transform)
input_files = [f.stage() for f in output_files]
output_path = ln.dev.datasets.schmidt22_perturbseq(basedir=ln.settings.storage)
output_file = ln.File(output_path, description="perturbseq counts")
output_file.save()
Hide code cell output
❗ record with similar name exist! did you mean to load it?
id __ratio__
name
Cell Ranger 1lyCPM7UktPARA 90.0
βœ… saved: Transform(id='UT497nlSqyvPFT', name='Postprocess Cell Ranger', version='2.0', type='pipeline', updated_at=2023-09-06 17:23:52, created_by_id='bKeW4T6E')
βœ… saved: Run(id='TvpDLGOg6Z3Ot8dpKvDS', run_at=2023-09-06 17:23:52, transform_id='UT497nlSqyvPFT', created_by_id='bKeW4T6E')
πŸ’‘ adding file 5HO0bEpM57EmnbQf2F3D as input for run TvpDLGOg6Z3Ot8dpKvDS, adding parent transform 1lyCPM7UktPARA
πŸ’‘ adding file ydBpTjW2Lf8JhuVDaHJ2 as input for run TvpDLGOg6Z3Ot8dpKvDS, adding parent transform 1lyCPM7UktPARA
πŸ’‘ adding file vyyA5ryK7KhCh8Pi2BYw as input for run TvpDLGOg6Z3Ot8dpKvDS, adding parent transform 1lyCPM7UktPARA
πŸ’‘ file in storage 'mydata' with key 'schmidt22_perturbseq.h5ad'
πŸ’‘ data is AnnDataLike, consider using .from_anndata() to link var_names and obs.columns as features

Inspect data flow:

output_files[0].view_flow()
https://d33wubrfki0l68.cloudfront.net/4f0bcb9cdf52393c1a54ab9b28df9bcc19b82309/c5952/_images/be3e435586b08baa7957666146724caf7079a48730c0031ed6cb3441b38918de.svg

Integrate scRNA-seq & phenotypic data #

Integrate data in a notebook:

transform = ln.Transform(
    name="Perform single cell analysis, integrate with CRISPRa screen",
    type="notebook",
)
ln.track(transform)

file_ps = ln.File.filter(description__icontains="perturbseq").one()
adata = file_ps.load()
file_hits = ln.File.filter(description="hits from schmidt22 crispra GWS").one()
screen_hits = file_hits.load()

import scanpy as sc

sc.tl.score_genes(adata, adata.var_names.intersection(screen_hits.index).tolist())
filesuffix = "_fig1_score-wgs-hits.png"
sc.pl.umap(adata, color="score", show=False, save=filesuffix)
filepath = f"figures/umap{filesuffix}"
file = ln.File(filepath, key=filepath)
file.save()
filesuffix = "fig2_score-wgs-hits-per-cluster.png"
sc.pl.matrixplot(
    adata, groupby="cluster_name", var_names=["score"], show=False, save=filesuffix
)
filepath = f"figures/matrixplot_{filesuffix}"
file = ln.File(filepath, key=filepath)
file.save()
Hide code cell output
❗ records with similar names exist! did you mean to load one of them?
id __ratio__
name
Cell Ranger 1lyCPM7UktPARA 85.5
GWS CRIPSRa analysis qBCjaQHpKfIsZm 85.5
Postprocess Cell Ranger UT497nlSqyvPFT 85.5
Upload GWS CRISPRa result s4LPhVnykuaLx9 85.5
βœ… saved: Transform(id='2bBmrL0v57PBFb', name='Perform single cell analysis, integrate with CRISPRa screen', type='notebook', updated_at=2023-09-06 17:23:53, created_by_id='bKeW4T6E')
βœ… saved: Run(id='eKt2iXkTOzJ4HAA7JakD', run_at=2023-09-06 17:23:53, transform_id='2bBmrL0v57PBFb', created_by_id='bKeW4T6E')
πŸ’‘ adding file YmPfE8kMIMPQXWLqMN9Z as input for run eKt2iXkTOzJ4HAA7JakD, adding parent transform UT497nlSqyvPFT
πŸ’‘ adding file MxMRMbv8t97Khanw8PKR as input for run eKt2iXkTOzJ4HAA7JakD, adding parent transform qBCjaQHpKfIsZm
WARNING: saving figure to file figures/umap_fig1_score-wgs-hits.png
πŸ’‘ file will be copied to default storage upon `save()` with key 'figures/umap_fig1_score-wgs-hits.png'
βœ… storing file 'kSzJeYmAodKRpSqAEj3T' at 'figures/umap_fig1_score-wgs-hits.png'
WARNING: saving figure to file figures/matrixplot_fig2_score-wgs-hits-per-cluster.png
πŸ’‘ file will be copied to default storage upon `save()` with key 'figures/matrixplot_fig2_score-wgs-hits-per-cluster.png'
βœ… storing file 'txEpioqEcozvQkhUL8GL' at 'figures/matrixplot_fig2_score-wgs-hits-per-cluster.png'

Review results#

Let’s load one of the plots:

ln.track()
file = ln.File.filter(key__contains="figures/matrixplot").one()
file.stage()
Hide code cell output
πŸ’‘ notebook imports: ipython==8.15.0 lamindb==0.52.2 scanpy==1.9.4
βœ… saved: Transform(id='1LCd8kco9lZUz8', name='Project flow', short_name='project-flow', version='0', type=notebook, updated_at=2023-09-06 17:23:55, created_by_id='bKeW4T6E')
βœ… saved: Run(id='prxo762xPZEM71uV1Wvn', run_at=2023-09-06 17:23:55, transform_id='1LCd8kco9lZUz8', created_by_id='bKeW4T6E')
πŸ’‘ adding file txEpioqEcozvQkhUL8GL as input for run prxo762xPZEM71uV1Wvn, adding parent transform 2bBmrL0v57PBFb
PosixUPath('/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/figures/matrixplot_fig2_score-wgs-hits-per-cluster.png')
display(Image(filename=file.path))
https://d33wubrfki0l68.cloudfront.net/dcbd1e67232f2ede82171ba02237575cc586c2b7/1ceff/_images/45891ad4693b5bfeb52a48b2ab2e5d0a82220b9482360ee1a8757fad581fffdc.png

We see that the image file is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:

file.view_flow()
https://d33wubrfki0l68.cloudfront.net/6879c9220527f414d9d80036aaa8109011d7a3e2/3f11e/_images/974b05bc2f8ce9b98bd3dc5ea40a3210a3be6c68ffa9eef3b658e1f17d614cf7.svg

Alternatively, we can also look at the sequence of transforms:

transform = ln.Transform.search("Bird's eye view", return_queryset=True).first()
transform.parents.df()
name short_name version type reference initial_version_id updated_at created_by_id
id
UT497nlSqyvPFT Postprocess Cell Ranger None 2.0 pipeline None None 2023-09-06 17:23:53 bKeW4T6E
qBCjaQHpKfIsZm GWS CRIPSRa analysis None None notebook None None 2023-09-06 17:23:51 bKeW4T6E
transform.view_parents()
https://d33wubrfki0l68.cloudfront.net/44b04e0a1eb848f426fe2bd8109a98005de2c458/34819/_images/818d641baf72f77857a55279e02e200e02a3c152dcb95d808a8d21231a284f57.svg

Understand runs#

We tracked pipeline and notebook runs through run_context, which stores a Transform and a Run record as a global context.

File objects are the inputs and outputs of runs.

What if I don’t want a global context?

Sometimes, we don’t want to create a global run context but manually pass a run when creating a file:

run = ln.Run(transform=transform)
ln.File(filepath, run=run)
When does a file appear as a run input?

When accessing a file via stage(), load() or backed(), two things happen:

  1. The current run gets added to file.input_of

  2. The transform of that file gets added as a parent of the current transform

You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False: Can I disable tracking run inputs?

You can also track run inputs on a case by case basis via is_run_input=True, e.g., here:

file.load(is_run_input=True)

Query by provenance#

We can query or search for the notebook that created the file:

transform = ln.Transform.search("GWS CRIPSRa analysis", return_queryset=True).first()

And then find all the files created by that notebook:

ln.File.filter(transform=transform).df()
storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
MxMRMbv8t97Khanw8PKR oJ5MWMxM None .parquet DataFrame hits from schmidt22 crispra GWS None 18368 O2Owo0_QlM9JBS2zAZD4Lw md5 qBCjaQHpKfIsZm 9M7Rfmgc4qIdKRV05ZgP None 2023-09-06 17:23:51 bKeW4T6E

Which transform ingested a given file?

file = ln.File.filter().first()
file.transform
Transform(id='s4LPhVnykuaLx9', name='Upload GWS CRISPRa result', type='app', updated_at=2023-09-06 17:23:50, created_by_id='DzTjkKse')

And which user?

file.created_by
User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-06 17:23:51)

Which transforms were created by a given user?

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser2).df()
name short_name version type reference initial_version_id updated_at created_by_id
id
qBCjaQHpKfIsZm GWS CRIPSRa analysis None None notebook None None 2023-09-06 17:23:51 bKeW4T6E
1lyCPM7UktPARA Cell Ranger None 7.2.0 pipeline None None 2023-09-06 17:23:52 bKeW4T6E
UT497nlSqyvPFT Postprocess Cell Ranger None 2.0 pipeline None None 2023-09-06 17:23:53 bKeW4T6E
2bBmrL0v57PBFb Perform single cell analysis, integrate with C... None None notebook None None 2023-09-06 17:23:54 bKeW4T6E
1LCd8kco9lZUz8 Project flow project-flow 0 notebook None None 2023-09-06 17:23:55 bKeW4T6E

Which notebooks were created by a given user?

ln.Transform.filter(created_by=users.testuser2, type="notebook").df()
name short_name version type reference initial_version_id updated_at created_by_id
id
qBCjaQHpKfIsZm GWS CRIPSRa analysis None None notebook None None 2023-09-06 17:23:51 bKeW4T6E
2bBmrL0v57PBFb Perform single cell analysis, integrate with C... None None notebook None None 2023-09-06 17:23:54 bKeW4T6E
1LCd8kco9lZUz8 Project flow project-flow 0 notebook None None 2023-09-06 17:23:55 bKeW4T6E

We can also view all recent additions to the entire database:

ln.view()
Hide code cell output
File

storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
txEpioqEcozvQkhUL8GL oJ5MWMxM figures/matrixplot_fig2_score-wgs-hits-per-clu... .png None None None 28814 JYIPcat0YWYVCX3RVd3mww md5 2bBmrL0v57PBFb eKt2iXkTOzJ4HAA7JakD None 2023-09-06 17:23:54 bKeW4T6E
kSzJeYmAodKRpSqAEj3T oJ5MWMxM figures/umap_fig1_score-wgs-hits.png .png None None None 118999 laQjVk4gh70YFzaUyzbUNg md5 2bBmrL0v57PBFb eKt2iXkTOzJ4HAA7JakD None 2023-09-06 17:23:54 bKeW4T6E
YmPfE8kMIMPQXWLqMN9Z oJ5MWMxM schmidt22_perturbseq.h5ad .h5ad AnnData perturbseq counts None 20659936 la7EvqEUMDlug9-rpw-udA md5 UT497nlSqyvPFT TvpDLGOg6Z3Ot8dpKvDS None 2023-09-06 17:23:53 bKeW4T6E
5HO0bEpM57EmnbQf2F3D oJ5MWMxM perturbseq/filtered_feature_bc_matrix/barcodes... .tsv.gz None None None 6 PfjRN-UDwuNfacHdQaSC7g md5 1lyCPM7UktPARA uKwtoPBWgIhKRvfAmDij None 2023-09-06 17:23:52 bKeW4T6E
vyyA5ryK7KhCh8Pi2BYw oJ5MWMxM perturbseq/filtered_feature_bc_matrix/matrix.m... .gz None None None 6 U4a9JRZUHyTNgVwJdGVVfQ md5 1lyCPM7UktPARA uKwtoPBWgIhKRvfAmDij None 2023-09-06 17:23:52 bKeW4T6E
ydBpTjW2Lf8JhuVDaHJ2 oJ5MWMxM perturbseq/filtered_feature_bc_matrix/features... .tsv.gz None None None 6 mdqJdubapHvpAkj1QMXLZA md5 1lyCPM7UktPARA uKwtoPBWgIhKRvfAmDij None 2023-09-06 17:23:52 bKeW4T6E
pRPxgofrlsa3MD1qjlMe oJ5MWMxM fastq/perturbseq_R2_001.fastq.gz .fastq.gz None None None 6 pK66bpMxisWYu5TayY0gBA md5 lub9rJoMCxWO48 OnitYPqw53030yZqlpzU None 2023-09-06 17:23:51 DzTjkKse
Run

transform_id run_at created_by_id reference reference_type
id
6LXMF159xiEAS1QYPPOa s4LPhVnykuaLx9 2023-09-06 17:23:49 DzTjkKse None None
9M7Rfmgc4qIdKRV05ZgP qBCjaQHpKfIsZm 2023-09-06 17:23:50 bKeW4T6E None None
OnitYPqw53030yZqlpzU lub9rJoMCxWO48 2023-09-06 17:23:51 DzTjkKse None None
uKwtoPBWgIhKRvfAmDij 1lyCPM7UktPARA 2023-09-06 17:23:52 bKeW4T6E None None
TvpDLGOg6Z3Ot8dpKvDS UT497nlSqyvPFT 2023-09-06 17:23:52 bKeW4T6E None None
eKt2iXkTOzJ4HAA7JakD 2bBmrL0v57PBFb 2023-09-06 17:23:53 bKeW4T6E None None
prxo762xPZEM71uV1Wvn 1LCd8kco9lZUz8 2023-09-06 17:23:55 bKeW4T6E None None
Storage

root type region updated_at created_by_id
id
oJ5MWMxM /home/runner/work/lamin-usecases/lamin-usecase... local None 2023-09-06 17:23:47 DzTjkKse
Transform

name short_name version type reference initial_version_id updated_at created_by_id
id
1LCd8kco9lZUz8 Project flow project-flow 0 notebook None None 2023-09-06 17:23:55 bKeW4T6E
2bBmrL0v57PBFb Perform single cell analysis, integrate with C... None None notebook None None 2023-09-06 17:23:54 bKeW4T6E
UT497nlSqyvPFT Postprocess Cell Ranger None 2.0 pipeline None None 2023-09-06 17:23:53 bKeW4T6E
1lyCPM7UktPARA Cell Ranger None 7.2.0 pipeline None None 2023-09-06 17:23:52 bKeW4T6E
lub9rJoMCxWO48 Chromium 10x upload None None pipeline None None 2023-09-06 17:23:51 DzTjkKse
qBCjaQHpKfIsZm GWS CRIPSRa analysis None None notebook None None 2023-09-06 17:23:51 bKeW4T6E
s4LPhVnykuaLx9 Upload GWS CRISPRa result None None app None None 2023-09-06 17:23:50 DzTjkKse
User

handle email name updated_at
id
bKeW4T6E testuser2 testuser2@lamin.ai Test User2 2023-09-06 17:23:52
DzTjkKse testuser1 testuser1@lamin.ai Test User1 2023-09-06 17:23:51
Hide code cell content
!lamin login testuser1
!lamin delete --force mydata
!rm -r ./mydata
βœ… logged in with email testuser1@lamin.ai and id DzTjkKse
πŸ’‘ deleting instance testuser1/mydata
βœ…     deleted instance settings file: /home/runner/.lamin/instance--testuser1--mydata.env
βœ…     instance cache deleted
βœ…     deleted '.lndb' sqlite file
❗     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata