Integrate scRNA-seq datasets#
scRNA-seq data integration is the process of analyzing data from several scRNA sequencing experiments to uncover common or distinct biological insights and patterns.
Here, weโll demonstrate how to fetch two scRNA-seq datasets by registered metadata such as cell types to finally integrate them.
Setup#
!lamin load test-scrna
Show code cell output
๐ก found cached instance metadata: /home/runner/.lamin/instance--testuser1--test-scrna.env
โ
loaded instance: testuser1/test-scrna
import lamindb as ln
import lnschema_bionty as lb
import anndata as ad
โ
loaded instance: testuser1/test-scrna (lamindb 0.52.2)
ln.track()
๐ก notebook imports: anndata==0.9.2 lamindb==0.52.2 lnschema_bionty==0.30.4
โ
saved: Transform(id='agayZTonayqAz8', name='Integrate scRNA-seq datasets', short_name='scrna2', version='0', type=notebook, updated_at=2023-09-06 17:23:24, created_by_id='DzTjkKse')
โ
saved: Run(id='wRp7wmEH6RhrW5PYetqh', run_at=2023-09-06 17:23:24, transform_id='agayZTonayqAz8', created_by_id='DzTjkKse')
Access #
Query files by provenance metadata#
users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).search("register scrna")
id | __ratio__ | |
---|---|---|
name | ||
Validate & register scRNA-seq datasets | Nv48yAceNSh8z8 | 90.0 |
Integrate scRNA-seq datasets | agayZTonayqAz8 | 85.5 |
transform = ln.Transform.filter(id="Nv48yAceNSh8z8").one()
ln.File.filter(transform=transform).df()
storage_id | key | suffix | accessor | description | version | size | hash | hash_type | transform_id | run_id | initial_version_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
7XqFQvVXP2vYY29SEF8V | kSdUg2Cl | None | .h5ad | AnnData | Conde22 | None | 28049505 | WEFcMZxJNmMiUOFrcSTaig | md5 | Nv48yAceNSh8z8 | vqkf0y8uN3Qdq8ROUKih | None | 2023-09-06 17:22:49 | DzTjkKse |
LqUYQ5NBOBmTw4af4ZKn | kSdUg2Cl | None | .h5ad | AnnData | 10x reference pbmc68k | None | 660792 | GU-hbSJqGkENOxVKFLmvbA | md5 | Nv48yAceNSh8z8 | vqkf0y8uN3Qdq8ROUKih | None | 2023-09-06 17:23:17 | DzTjkKse |
Query files based on biological metadata#
assays = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
cell_types = lb.CellType.lookup()
query = ln.File.filter(
experimental_factors=assays.single_cell_rna_sequencing,
species=species.human,
cell_types=cell_types.cd8_positive_alpha_beta_memory_t_cell,
)
query.df()
storage_id | key | suffix | accessor | description | version | size | hash | hash_type | transform_id | run_id | initial_version_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
7XqFQvVXP2vYY29SEF8V | kSdUg2Cl | None | .h5ad | AnnData | Conde22 | None | 28049505 | WEFcMZxJNmMiUOFrcSTaig | md5 | Nv48yAceNSh8z8 | vqkf0y8uN3Qdq8ROUKih | None | 2023-09-06 17:22:49 | DzTjkKse |
LqUYQ5NBOBmTw4af4ZKn | kSdUg2Cl | None | .h5ad | AnnData | 10x reference pbmc68k | None | 660792 | GU-hbSJqGkENOxVKFLmvbA | md5 | Nv48yAceNSh8z8 | vqkf0y8uN3Qdq8ROUKih | None | 2023-09-06 17:23:17 | DzTjkKse |
Transform #
Compare gene sets#
Get file objects:
file1, file2 = query.list()
file1.describe()
๐ก File(id='7XqFQvVXP2vYY29SEF8V', suffix='.h5ad', accessor='AnnData', description='Conde22', size=28049505, hash='WEFcMZxJNmMiUOFrcSTaig', hash_type='md5', updated_at=2023-09-06 17:22:49)
Provenance:
๐๏ธ storage: Storage(id='kSdUg2Cl', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-09-06 17:23:22, created_by_id='DzTjkKse')
๐ transform: Transform(id='Nv48yAceNSh8z8', name='Validate & register scRNA-seq datasets', short_name='scrna', version='0', type='notebook', updated_at=2023-09-06 17:23:16, created_by_id='DzTjkKse')
๐ฃ run: Run(id='vqkf0y8uN3Qdq8ROUKih', run_at=2023-09-06 17:22:08, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
๐ค created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-06 17:23:22)
Features:
var: FeatureSet(id='Bs3qnL2mUb5A67MjKBeY', n=36503, type='number', registry='bionty.Gene', hash='dnRexHCtxtmOU81_EpoJ', updated_at=2023-09-06 17:22:44, modality_id='XgCPze0r', created_by_id='DzTjkKse')
'RPLP1', 'SLC3A2', 'IGHV1-67', 'TLR8-AS1', 'HDGFL3', 'CA14', 'None', 'None', 'EMSY', 'URAD', ...
obs: FeatureSet(id='u0Fwvp8ZeUa3qRFkRDSE', n=4, registry='core.Feature', hash='Lxv_RV1GMXi24AlwilEg', updated_at=2023-09-06 17:22:49, modality_id='8hmGOB2Q', created_by_id='DzTjkKse')
๐ donor (12, core.Label): 'A35', 'A31', 'A36', '582C', 'A37', 'D503', '640C', 'A29', 'D496', '637C', ...
๐ assay (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 3' v3', '10x 5' v2', '10x 5' v1'
๐ cell_type (32, bionty.CellType): 'gamma-delta T cell', 'mucosal invariant T cell', 'effector memory CD4-positive, alpha-beta T cell', 'lymphocyte', 'megakaryocyte', 'germinal center B cell', 'naive thymus-derived CD8-positive, alpha-beta T cell', 'effector memory CD8-positive, alpha-beta T cell, terminally differentiated', 'animal cell', 'CD16-positive, CD56-dim natural killer cell, human', ...
๐ tissue (17, bionty.Tissue): 'caecum', 'jejunal epithelium', 'lung', 'blood', 'ileum', 'duodenum', 'mesenteric lymph node', 'omentum', 'skeletal muscle tissue', 'lamina propria', ...
Labels:
๐ท๏ธ species (1, bionty.Species): 'human'
๐ท๏ธ tissues (17, bionty.Tissue): 'caecum', 'jejunal epithelium', 'lung', 'blood', 'ileum', 'duodenum', 'mesenteric lymph node', 'omentum', 'skeletal muscle tissue', 'lamina propria', ...
๐ท๏ธ cell_types (32, bionty.CellType): 'gamma-delta T cell', 'mucosal invariant T cell', 'effector memory CD4-positive, alpha-beta T cell', 'lymphocyte', 'megakaryocyte', 'germinal center B cell', 'naive thymus-derived CD8-positive, alpha-beta T cell', 'effector memory CD8-positive, alpha-beta T cell, terminally differentiated', 'animal cell', 'CD16-positive, CD56-dim natural killer cell, human', ...
๐ท๏ธ experimental_factors (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 3' v3', '10x 5' v2', '10x 5' v1'
๐ท๏ธ labels (12, core.Label): 'A35', 'A31', 'A36', '582C', 'A37', 'D503', '640C', 'A29', 'D496', '637C', ...
file1.view_flow()
file2.describe()
๐ก File(id='LqUYQ5NBOBmTw4af4ZKn', suffix='.h5ad', accessor='AnnData', description='10x reference pbmc68k', size=660792, hash='GU-hbSJqGkENOxVKFLmvbA', hash_type='md5', updated_at=2023-09-06 17:23:17)
Provenance:
๐๏ธ storage: Storage(id='kSdUg2Cl', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-09-06 17:23:22, created_by_id='DzTjkKse')
๐ transform: Transform(id='Nv48yAceNSh8z8', name='Validate & register scRNA-seq datasets', short_name='scrna', version='0', type='notebook', updated_at=2023-09-06 17:23:16, created_by_id='DzTjkKse')
๐ฃ run: Run(id='vqkf0y8uN3Qdq8ROUKih', run_at=2023-09-06 17:22:08, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
๐ค created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-06 17:23:22)
Features:
var: FeatureSet(id='caaugrojoACm1HppamYy', n=754, type='number', registry='bionty.Gene', hash='WMDxN7253SdzGwmznV5d', updated_at=2023-09-06 17:23:16, modality_id='XgCPze0r', created_by_id='DzTjkKse')
'SYPL1', 'GTF2E2', 'IFITM2', 'MRPS21', 'SLC3A2', 'FYB1', 'CD74', 'DENND2D', 'ARID4B', 'ATP6V0E1', ...
obs: FeatureSet(id='Nss5TL03yTdOqC7wVn4B', n=1, registry='core.Feature', hash='Q9xarVfGpJg6dU53Jh_Q', updated_at=2023-09-06 17:23:17, modality_id='8hmGOB2Q', created_by_id='DzTjkKse')
๐ cell_type (9, bionty.CellType): 'CD16-positive, CD56-dim natural killer cell, human', 'mature T cell', 'B cell, CD19-positive', 'Cd4-negative, CD8_alpha-negative, CD11b-positive dendritic cell', 'dendritic cell', 'CD8-positive, alpha-beta memory T cell', 'central memory CD8-positive, alpha-beta T cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'monocyte'
external: FeatureSet(id='ogV09OEwuyEShQdmbeGc', n=2, registry='core.Feature', hash='FWcE11dG0K-9jYgLf5d3', updated_at=2023-09-06 17:23:17, modality_id='8hmGOB2Q', created_by_id='DzTjkKse')
๐ species (1, bionty.Species): 'human'
๐ assay (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
Labels:
๐ท๏ธ species (1, bionty.Species): 'human'
๐ท๏ธ cell_types (9, bionty.CellType): 'CD16-positive, CD56-dim natural killer cell, human', 'mature T cell', 'B cell, CD19-positive', 'Cd4-negative, CD8_alpha-negative, CD11b-positive dendritic cell', 'dendritic cell', 'CD8-positive, alpha-beta memory T cell', 'central memory CD8-positive, alpha-beta T cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'monocyte'
๐ท๏ธ experimental_factors (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
file2.view_flow()
Load files into memory:
file1_adata = file1.load()
file2_adata = file2.load()
๐ก adding file 7XqFQvVXP2vYY29SEF8V as input for run wRp7wmEH6RhrW5PYetqh, adding parent transform Nv48yAceNSh8z8
๐ก adding file LqUYQ5NBOBmTw4af4ZKn as input for run wRp7wmEH6RhrW5PYetqh, adding parent transform Nv48yAceNSh8z8
Here we compute shared genes without loading files:
file1_genes = file1.features["var"]
file2_genes = file2.features["var"]
shared_genes = file1_genes & file2_genes
len(shared_genes)
749
shared_genes.list("symbol")[:10]
['SLC3A2',
'DUSP2',
'WDR13',
'TKT',
'BST2',
'ICAM4',
'H1-10',
'NFE2',
'HLA-DMA',
'HVCN1']
Compare cell types#
file1_celltypes = file1.cell_types.all()
file2_celltypes = file2.cell_types.all()
shared_celltypes = file1_celltypes & file2_celltypes
shared_celltypes_names = shared_celltypes.list("name")
shared_celltypes_names
['CD16-positive, CD56-dim natural killer cell, human',
'CD8-positive, alpha-beta memory T cell']
We can now subset the two datasets by shared cell types:
file1_adata_subset = file1_adata[
file1_adata.obs["cell_type"].isin(shared_celltypes_names)
]
file2_adata_subset = file2_adata[
file2_adata.obs["cell_type"].isin(shared_celltypes_names)
]
Concatenate subsetted datasets:
adata_concat = ad.concat(
[file1_adata_subset, file2_adata_subset],
label="file",
keys=[file1.description, file2.description],
)
adata_concat
AnnData object with n_obs ร n_vars = 244 ร 749
obs: 'cell_type', 'file'
obsm: 'X_umap'
adata_concat.obs.value_counts()
cell_type file
CD8-positive, alpha-beta memory T cell Conde22 120
CD16-positive, CD56-dim natural killer cell, human Conde22 114
CD8-positive, alpha-beta memory T cell 10x reference pbmc68k 7
CD16-positive, CD56-dim natural killer cell, human 10x reference pbmc68k 3
dtype: int64
# clean up test instance
!lamin delete --force test-scrna
!rm -r ./test-scrna
Show code cell output
๐ก deleting instance testuser1/test-scrna
โ
deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-scrna.env
โ
instance cache deleted
โ
deleted '.lndb' sqlite file
โ consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna